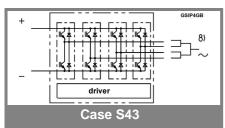

SKiiP 2413GB123-4DL

2-pack-integrated intelligent Power System

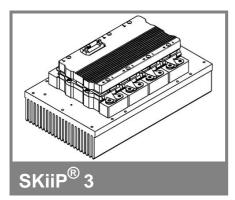

Power section

SKiiP 2413GB123-4DL

Data

Power section features

- SKiiP technology inside
- Trench IGBTs
- CAL HD diode technology
- Integrated current sensor
- Integrated temperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP[®] 3 System)
- IEC 60068-1 (climate) 40/125/56
- UL recognized File no. E63532
- with assembly of suitable MKP capacitor per terminal
- AC connection busbars must be connected by the user; copper busbars available on request



Absolute	Maximum Ratings	$T_s = 25^{\circ}C$ unless otherwise specified				
Symbol	Conditions	Values	Units			
IGBT						
V _{CES}		1200	V			
V _{CC} ¹⁾	Operating DC link voltage	900	V			
V _{GES}		± 20	V			
I _C	T _s = 25 (70) °C	2400 (1800)	А			
Inverse diode						
I _F = - I _C	T _s = 25 (70) °C	1860 (1400)	А			
I _{FSM}	T _j = 150 °C, t _p = 10 ms; sin.	13500	А			
I²t (Diode)	Diode, T _j = 150 °C, 10 ms	911	kA²s			
T _j , (T _{stg})		- 40 + 150 (125)	°C			
V _{isol}	rms, AC, 1 min, main terminals to heat sink	3000	V			
I _{AC-terminal}	per AC terminal, rms, T _s = 70 °C,	400	А			
	T _{terminal} <115 °C					

Characteristics T _s =					T _s = 25°	r_s = 25°C unless otherwise specified			
Symbol	Conditions			min.	typ.	max.	Units		
IGBT									
V _{CEsat}	I _C = 1200 A measured at t	A, T _j = 25 erminal	(125) °C;			1,7 (1,9)	2,1	V	
V _{CEO}	T _i = 25 (12	25) °C; at t	erminal			0,9 (0,8)	1,1 (1)	V	
r _{CE}	$T_{i} = 25 (12)$					0,7 (0,9)	0,9 (1,2)	mΩ	
I _{CES}	V _{GE} = 0 V, T _i = 25 (12		ES'			4,8 (144)		mA	
E _{on} + E _{off}	$I_{\rm C} = 1200$	A, V _{CC} = 6	00 V			442		mJ	
	T _j = 125 °C	C, V _{CC} = 9	00 V			780		mJ	
R _{CC+EE} ′	terminal ch	nip, T _i = 25	5 °C			0,13		mΩ	
L _{CE}	top, botton	n				3		nH	
C _{CHC}	per phase	, AC-side				6,8		nF	
Inverse o	diode								
V _F = V _{EC}	I _F = 1200 / measured at t		(125) °C			1,5 (1,5)	1,8	V	
V _{to}	T _i = 25 (12	25) °C				0,9 (0,7)	1,1 (0,9)	v	
r _T	T _i = 25 (12	25) °C				0,5 (0,7)	0,6 (0,8)	mΩ	
E _{rr}	$I_{\rm C} = 1200$	A, V _{CC} = 6	00 V			84		mJ	
	T _j = 125 °C	C, V _{CC} = 9	00 V			112		mJ	
Mechani	cal data								
M _{dc}	DC termin	,			6		8	Nm	
M _{ac}	AC termina				13		15	Nm	
W	SKiiP [®] 3 S	ystem w/c	heat sink			3,1		kg	
w	heat sink					9,7		kg	
						SKF 16B nperature		s"	
R _{th(j-s)I}	per IGBT	,				•	0,015	K/W	
R _{th(j-s)D}	per diode						0,029	K/W	
Z _{th}	R _i (mK/W) (max. values)				1				
	1	2	3	4	1	2	3	4	
Z _{th(j-r)I}	5,6	6	6,4	0	363	0,18	0,04	1	
Z _{th(j-r)D}	10	8,4	14,8	14,8	50	5	0,25	0,04	
Z _{th(r-a)}	3,1	17,3	3,7	0,9	230	78	13	0,4	

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

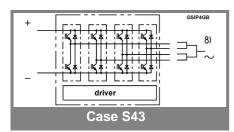
SKiiP 2413GB123-4DL

2-pack-integrated intelligent Power System

2-pack integrated gate driver SKiiP 2413GB123-4DL

Data

Gate driver features


- CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and DC-bus voltage (option)
- Short circuit protection
- Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- Interlock of top/bottom switch
- Isolation by transformers
- Fibre optic interface (option for GB-types only)
- IEC 60068-1 (climate) 40/85/56
- UL recognized file no. 242581

Absolute Maximum Ratings		$a = 25^{\circ}$ C unless otherwise specified		
Symbol	Conditions	Values	Units	
V _{S2}	unstabilized 24 V power supply	30	V	
V _i	input signal voltage (high)	15 + 0,3	V	
dv/dt	secondary to primary side	75	kV/μs	
V _{isollO}	input / output (AC, rms, 2s)	3000	V	
VisoIPD	partial discharge extinction voltage, rms, $Q_{PD} \leq 10 \text{ pC}$;	1170	V	
V _{isol12}	output 1 / output 2 (AC, rms, 2s)	1500	V	
f _{sw}	switching frequency	8	kHz	
f _{out}	output frequency for I _{peak(1)} =I _C	8	kHz	
$T_{op} (T_{stg})$	operating / storage temperature	- 40 + 85	°C	

Characte	eristics	(T _a			= 25°C)
Symbol	Conditions	min.	typ.	max.	Units
V _{S2}	supply voltage non stabilized	13	24	30	V
I _{S2}	V _{S2} = 24 V	324+50*f/kHz+0,00011*(I _{AC} /A) ²			mA
V _{iT+}	input threshold voltage (High)			12,3	V
V _{iT-}	input threshold voltage (Low)	4,6			V
R _{IN}	input resistance		10		kΩ
CIN	input capacitance		1		nF
t _{d(on)IO}	input-output turn-on propagation time		1,3		μs
t _{d(off)IO}	input-output turn-off propagation time		1,3		μs
t _{pERRRESET}	error memory reset time		9		μs
t _{TD}	top / bottom switch interlock time		3,3		μs
I _{analogOUT}	max. 5mA; 8 V corresponds to 15 V supply voltage for external components		2400		A
I _{s1out}	max. load current			50	mA
I _{TRIPSC}	over current trip level				
	$(I_{analog} OUT = 10 V)$		3000		А
T _{tp}	over temperature protection	110		120	°C
	U _{DC} -protection (U _{analog OUT} = 9 V);	i	not implemente	d	V
	(option for GB types)				

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

